The Infrared Spectra and Normal Coordinate Treatments of $L_3Sn-Mn(CO)_5$ (L=Cl, Br, CH₃, and C₆H₅)

Satoru Onaka1)

Department of Chemistry, Faculty of Science, The University of Tokyo, Bunkyo-ku, Tokyo (Received January 7, 1971)

The infrared absorption spectra (2200—60 cm⁻¹) have been measured for four analogous compounds, Cl₃Sn-Mn(CO)₅, Br₃Sn-Mn(CO)₅, (CH₃)₃Sn-Mn(CO)₅, and Ph₃Sn-Mn(CO)₅. Normal coordinate analysis has been made for three molecules-Cl₃Sn-Mn(CO)₅, Br₃Sn-Mn(CO)₅, and (CH₃)₃Sn-Mn(CO)₅- on the basis of a modified Urey-Bradley force-field. The calculated frequencies attain close agreement with validly-assigned frequencies. The force constant, K(Sn-Mn), for each molecule varies with the substituent on the tin atom, and increases in the order of: K(Sn-Mn) of $Cl_3Sn-Mn(CO)_5 > K(Sn-Mn)$ of $Br_3Sn-Mn(CO)_5 > K(Sn-Mn)$ of $(CH_3)_3Sn-Mn(CO)_5$. The vibrational eigenvectors reveal that the Sn-Mn stretching vibrational modes are considerably coupled with other vibrational modes, especially with CMnC deformation and axial MnC stretching modes.

Recently, the nature of M-Co bonds (M=Si, Ge, and Sn) has been studied by means of NQR^{2,3)} and the 119Sn-Mössbauer effect, 4-6) and it has been suggested that the stability of these compounds can be associated or correlated with M-Co π bonding.

The present author has also reported that the σ and π characteristics of the Sn-Mn bondings of a series of R_{3-x}X_xSn-Mn(CO)₅ compounds are extensively affected by the quantity of halogen on the tin atom; he reached this conclusion on the basis of 55Mn- and 1H-NMR and ¹¹⁹Sn-Mössbauer-effect studies.^{7,8)}

Although it is well recognized that the vibrational analysis is very profitable in determining the strengths of the bonds of interest as a total effect of σ and π interactions between atoms, especially in determining the strengths of the metal-metal bonds, such analysis has been successfully achieved in only a few cases 9-11) because of the many difficulties which must be overcome. However, the diatomic or pseudo-diatomic models have been employed to obtain information about the strengths of the metal-metal bonds. 12,13) According to Watters et al., 10) however, diatomic or pseudo-diatomic models may not be accurate for Cl₃-Si-Co(CO)₄ and Cl₃Ge-Co(CO)₄ because of the large extent of vibrational coupling with other modes.

The present author has now aimed to clarify the nature of the Sn-Mn bond further by making vibrational analyses of the series of L₂Sn-Mn(CO)₅ (L=Cl, Br and CH₃) compounds as a part of the study of the Sn-Mn bond. The present paper reports the infrared spectra of four molecules, Cl₃Sn-Mn- $(CO)_5$, $Br_3Sn-Mn(CO)_5$, $(CH_3)_3Sn-Mn(CO)_5$, and Ph₃Sn-Mn(CO)₅, spectral assignments, their normal coordinate analyses, and the characterizations of the Sn-Mn bonds.

Experimental

The samples were prepared by the methods described in the literature. 14,15) The purity of samples was determined by elemental analyses, by melting- or decomposing-point measurements, and by studying the infrared spectra (CO stretching region); the present values are in good agreement with previously published values. 15-17)

The infrared spectra in the CO stretching region were measured with a Hitachi EPI-G2 spectrometer in a hexane solution with a KBr liquid cell. The Nujol mull samples were also examined with Hitachi EPI-G2, EPI-L spectrometers and a FIS-1 double-beam vacuum spectrophotometer in the region from 2200 to 60 cm⁻¹. The results are summarized in Table 1 and in Fig. 1.

Normal Coordinate Treatment

Spectral Assignment. The vibrational ment for each molecule has been made by comparing the spectra of the four compounds with one another and by taking into consideration the calculated frequencies. The reported assignments of analogous compounds were also taken into account. 12,15-22)

¹⁾ Present address: Department of Chemistry, Nagoya Institute of Technology, Showa-ku, Nagoya, Japan.

²⁾ T. L. Brown, P. A. Edwards, C. B. Harris, and J. L. Kirsh, Inorg. Chem., 8, 763 (1969).

³⁾ D. D. Spencer, J. L. Kirsch, and T. L. Brown, ibid., 9, 235 (1970).

⁴⁾ D. E. Fenton and J. J. Zuckerman, J. Amer. Chem. Soc., 90, 6226 (1968).

⁵⁾ D. E. Feonton and J. J. Zuckerman, Inorg. Chem., 8, 1771 (1969).

⁶⁾ A. N. Karasyeov, N. E. Kolobova, L. S. Polak, V. S. Shpinel, and K. N. Anisimov, Theor. Eksperim. Khim. Akad. Nauk. Ukr. SSR, 2 (1966) 126. cited from V. I. Goldanskii, V. V. Khrapov, and and R. A. Stukan, Organometallic Chemistry Reviews, A, 4, 225 (1969).

⁷⁾ S. Onaka, Y. Sasaki, and H. Sano, This Bulletin, 44, 726 (1971).

⁸⁾ S. Onaka, T. Miyamoto, and Y. Sasaki, ibid., 44, 1851 (1971).

⁹⁾ C. O. Quicksall and T. G. Spiro, Inorg. Chem., 7, 2365 (1968).

¹⁰⁾ K. L. Watters, J. N. Brittain, and W. M. Risen, Jr., ibid., 8, 1347 (1969).

¹¹⁾ C. O. Quicksall and T. G. Spiro, ibid., 8, 2363 (1969).

¹²⁾ N. A. D. Carey and H. C. Clark, *ibid.*, 7, 94 (1968).
13) P. N. Brier, A. A. Chalmers, J. Lewis, and S. B. Wild, J. Chem. Soc. A, 1967, 1889.

¹⁴⁾ R. D. Gorsich, J. Amer. Chem. Soc., 84, 2486 (1962).

¹⁵⁾ W. Jetz, P. B. Simons, J. A. J. Thompson, and W. A. G. Graham, Inorg. Chem., 5, 2217 (1966).

¹⁶⁾ H. R. H. Patil and W. A. G. Graham, ibid., 5, 1401 (1966).

¹⁷⁾ J. Dalton, I. Paul, J. G. Smith, and F. G. A. Stone, J. Chem. Soc., A, 1968, 1195.

¹⁸⁾ W. F. Edgell, J. W. Fisher, G. Sato, and W. M. Risen Jr., Inorg. Chem., 8, 1103 (1969).

¹⁹⁾ R. C. Poller, Spectrochim. Acta, 22, 935 (1966).

H. Kriegsmann and S. Pischtschan, Z. anorg. allgem. Chem., **308**, 212 (1961).

²¹⁾ D. A. Long, T. V. Spencer, D. N. Waters, and L. A. Woodward, Proc. Roy. Soc., A240, 499 (1957).

²²⁾ M. A. Bennett and R. J. H. Clark, J. Chem. Soc., 1964, 5560

Table 1, Observed infrared spectra, vibrational assignments and calculated frequencies

Observed frequencies cm ⁻¹		Calculated frequencies cm ⁻¹	Assign- ment	Approximate vibrational modes	Observed frequencies cm ⁻¹	Inten- sity	Calculated frequencies cm ⁻¹	Assign- ment	Approximate vibrational modes
Cl ₃ Sn-M	n(CO)	·····			2001	s	2001	S_4	CO str.
2126	m	2125	C	CO str.	1995	vs	1996	S ₁₉	CO str.
2046	VS	2048	S_5	CO str.	662	vs	663	S_{13}	MnCO def.
2040		2040	S ₁₉	CO str.	650	vs	654	S_{27}	MnCO def.
650	s vs	649	S_4	MnCO def.	583	vw	578	$S_{27} + S_{28}$	MnCO def.
642	vs	639	S ₁₃	MnCO def.	∼ 555	vw, sl	h		
~570	sh, vw		S_{27}	MnCO def.	545	w	539	S_{16}	MnCO def.
548	•	307	S_{28}	Mildo del.	518	S	514	S_{20}	Sn-CH ₃ str.
535	vw	539	C	MnCO def.	502	S	503	S_7	Sn-CH ₃ str.
497	vw	339	S_{16}	MinCO dei.	482	S	481	S_{18}	MnC str.
451	vw	447	C	Mar Clarker	∼ 425	w,sh	420	S_2	MnC str.
406	S	447	S_{18}	MnC str.	413	m	413	S_1	MnC str.
	W	407	S_1	MnC str.	179	s	179	S_8	Sn-Mn str.
394	vw	395	S_2	MnC str.	164	m	163	S_{21}	CSnC def.
345 240	vs, br	{354 {334	$\left. egin{array}{c} \mathbf{S_{20}} \\ \mathbf{S_{7}} \end{array} ight\}$	SnCl str.	130	m	{133 {125	S_9 S_{25}	CSnC def. CMnC, CMnSn
	w	107	C	0.34					def.
197	S	197	S_8	Sn-Mn str.	108	m	113	S_{24}	CMnC, CMnSn
130	S	{128 125	S_{21} S_{23}	ClSnCl def. CMnC def.	0.0		(91	S ₁₀	def. CMnC, CMnSn
112	vs	${120 \atop 111}$	$\left. egin{array}{c} \mathbf{S_9} \\ \mathbf{S_{24}} \end{array} ight\}$	ClSnCl def. CMnC def.	90	m	$\left. ight _{82}$	S_{22}	def. MnSnC def.
85	w	82	S_9	ClSnCl def.	Ph ₃ Sn-M	n/CO	\ b)		
65	S	78	S_{25}	CMnSn def.			/5		
Br ₃ Sn-M	$n(CO)_t$				2095	m		S_5	CO str.
2124	m	2124	S_5	CO str.	2029	W		S	CO str.
2045	vs	2047	S_{19}	CO str.	2004	vs		$\mathbf{S_{4}\atop S_{20}}$	CO str. CO str.
2038	s	2038	S_{4}	CO str.	657	vs		S_{13}	MnCO def.
645	vs	648	S_{13}	MnCO def.	642	vs		S_{13} S_{27}	MnCO def.
630	VS	635	$S_{13} \\ S_{27} + S_{26}$	MnCO def.	615	vs vw		S ₂₇	MIIGO del.
~565	vs	563		MnCO def.	~590				
534	vw	539	$S_{27} + S_{28}$		\sim 557	vw, sł	1		
495	vw	333	S_{16}	MnCO def.	545	w			
448		447	c	Mr. C. ata		w		c	MnC ata
406	S	404	S_{18}	MnC str.	481 450	S		S ₁₈	MnC str.
392	VW	404 395	S_1	MnC str.	450	S			on due to a mono- uted C_6H_5 ring.
	w		S_2	MnC str.	428	vw		SUBSTIL	
240	vs	{244 {216	$\left. egin{array}{c} \mathbf{S_{20}} \\ \mathbf{S_{7}} \end{array} ight\}$	SnBr str.	420	vw			
178	m	178	S_8	Sn-Mn str.	413	w			
125	m	125	S_{28}	CMnC def.	394	vv vw			
		∫112	S_{28} S_{24}	CMnC def.	256				
108	m	106	S_{10}^{24}	CMnC, CMnSn-	240	VS			
			10	def.	208	VS			
90	S	85	S_{21}	BrSnBr def.		S			
75	s, br	69	S_{21}	BrSnBr def.	204	S		C	Sn Mn at-
		61	S_9	BrSnBr def.	170	m		S ₈	Sn-Mn str.
$(CH_3)_3Sn$	-Mn(C	(O) _e a)			151	w			
	<u>`</u>			GO :	120	w			
2091	m	2091	S_5	CO str.	95 05	w			
2027	w	2029	S_6	CO str.	85	w			

a) Absorptions due to a CH_3 group on tin atom which are observed at NaCl region are excluded from the Table. b) Absorptions due to a C_6H_5 group on tin atom which are observed at NaCl region are excluded from the Table.

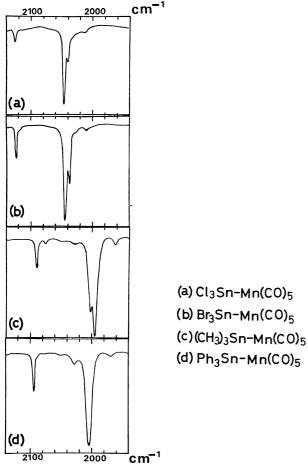


Fig. 1(a). Infrared spectra of L₃Sn-Mn(CO)₅.

The structure of $(CH_3)_3Sn-Mn(CO)_5$ is shown in Fig.2; it was determined by X-ray analysis.²³⁾ In this molecule, the local symmetry around the tin atom is C_{3v} , and that of the manganese atom is C_4v .²⁴⁾ In the vibrational analysis, this molecule can be regarded as a symmetry-top molecule, and the normal vibrations may be classified into $15 A_1$, $2 A_2$, and 11 E vibrations. It was assumed that the structure of $X_3Sn-Mn(CO)_5$ was the same as that of $(CH_3)_3Sn-Mn(CO)_5$. The close resemblance of their vibrational spectra supports this assumption.

The outline of the vibrational assignments is shown

The 2200—1900 cm⁻¹ Region (CO Stretching Region):

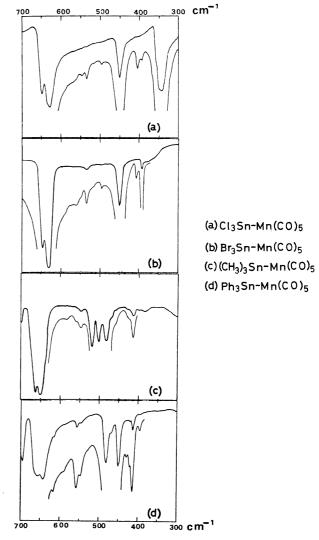


Fig. 1(b). Infrared spectra of L₃Sn-Mn(CO)₅.

According to many reports on L-Mn(CO)₅-type compounds, $^{13,25-33)}$ the highest-frequency absorption with a medium-to-weak intensity is assigned to the A_1 vibration; the most intense absorption is assigned to the E vibration due to the equatorial CO stretching mode, and the absorption with a medium-to-strong intensity to the A_1 vibration due to the axial CO stretching mode.

The 700–500 cm⁻¹ Region: The highest-frequency absorption with a strong intensity is assigned to the A_1 vibration due to the equatorial MnCO bending mode, and the most intense absorption in this region is tentatively assigned to the E vibration due to the axial MnCO bending mode. The strong absorptions at 518 and 502 cm⁻¹ for $(CH_3)_3Sn-Mn(CO)_5$ are assigned to the $Sn-CH_3$ stretching vibrations.²⁰⁾

The 500—350 cm⁻¹ Region: The highest-frequency absorption with the strongest intensity in this region is assigned to the E vibration, and the weak absorptions around 400 cm^{-1} are assigned to the A_1 vibrations of the MnC stretching modes. The strong absorption at 450 cm^{-1} for $\text{Ph}_3\text{Sn-Mn}(\text{CO})_5$ arises from the vibration of a mono-substituted benzene ring.¹⁹

The $350-200 \text{ cm}^{-1}$ Region: The assignments of

²³⁾ R. F. Bryan, J. Chem. Soc., A, 1968, 696.

²⁴⁾ The similar result has been reported for Ph₃Sn-Mn(CO)₅. Weber and R. F. Bryan, *Acta Cryst.*, **22**, 822 (1967).

²⁵⁾ L. E. Orgell, Inorg. Chem., 1, 25 (1962).

²⁶⁾ F. A. Cotton and C. S. Kraihanzel, J. Amer. Chem. Soc., 84, 4432 (1962).

²⁷⁾ T. L. Brown and D. J. Darensbourg, *Inorg. Chem.*, **4**, 1328 (1965).

²⁸⁾ F. A. Cotton and R. M. Wing, ibid., 4, 1328 (1965).

²⁹⁾ M. A. El-sayed and H. D. Kaesz, J. Mol. Spect., 9, 310 (1962).

³⁰⁾ H. D. Kaesz, R. Bau, D. Hendrickson, and J. M. Smith, J. Amer. Chem. Soc., 89, 2844 (1967).

³¹⁾ R. M. Wing and D. C. Crocker, Inorg. Chem., 6, 289 (1967).

³²⁾ J. B. Wilford and F. G. A. Stone, ibid., 4, 389 (1965).

³³⁾ F. A. Cotton, A. Musco, and G. Yagupsky, *ibid.*, **6**, 1357 (1967).

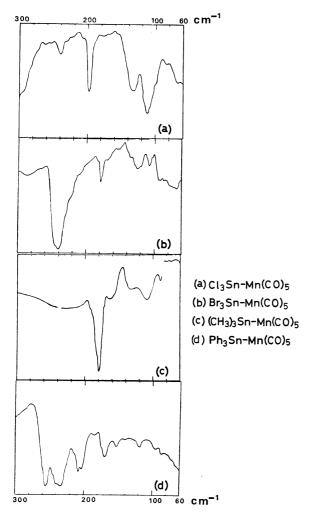


Fig. 1(c). Far-infrared spectra of $L_3Sn-Mn(CO)_5$.

the Sn–L stretching vibrations for each molecule are made on the basis of the assignments reported for $\rm SnX_4,^{21)}$ $\rm Sn(CH_3)_3X,^{20)}$ $\rm SnPh_4,$ and $\rm SnPh_3X.^{19)}$ The very strong and broad band at 345 cm⁻¹ for $\rm Cl_3Sn–Mn(CO)_5$ is assigned to the SnCl stretching vibration, and the similar band at 240 cm⁻¹ for $\rm Br_3Sn-Mn(CO)_5,$ to the SnBr stretching vibrations.

The 200—170 cm⁻¹ Region: The bands with strong to medium intensities observed at 197, 178, 179, and 170 cm⁻¹ for Cl₃Sn–Mn(CO)₅, Br₃Sn–Mn(CO)₅, (CH₃)₃Sn–Mn(CO)₅, and Ph₃Sn–Mn(CO)₅ respectively are assigned to the Sn–Mn stretching vibrations.

The 170—60 cm⁻¹ Region: For Cl₃Sn-Mn(CO)₅, the strong bands at 130 and 112 cm⁻¹ are observed.

These bands may be assigned to the deformation-vibrations of the $\mathrm{SnCl_3}$ group. The bands observed at 125 and 108 cm⁻¹ for $\mathrm{Br_3Sn-Mn(CO)_5}$ may be assigned to the skeletal CMnC bending modes of the E species. The manganese carbonyl, $\mathrm{Mn_2(CO)_{10}}$, also has two strong absorptions, at 120 and 110 cm⁻¹, which are due to the CMnC bending modes. The strong bands at 90—70 cm⁻¹ for this molecule may be assigned to the $\mathrm{SnBr_3}$ deformation-vibrations. The bands at 160 and 130 cm⁻¹ with medium intensities for $(\mathrm{CH_3})_3\mathrm{Sn-Mn(CO)_5}$ may be assigned to the CSnC deformation-vibrations. The absorption

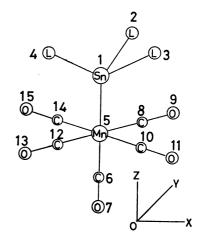


Fig. 2(a). The structure of L₃Sn-Mn(CO)₅.

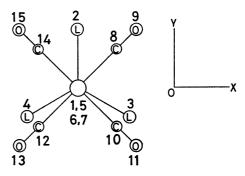


Fig. 2(b). The structure of L₃Sn-Mn(CO)₅.

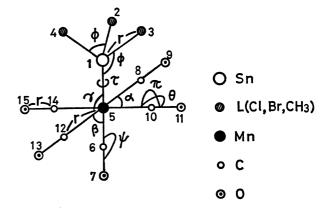


Fig. 3. Internal coordinates of L₃Sn-Mn(CO)₅.

at $110~\rm cm^{-1}$ for the $(\rm CH_3)_3\rm Sn-Mn(\rm CO)_5$ molecule may be assigned to the CMnC skeletal bending mode of the E species.

All the vibrational assignments are listed in Table 1. The Procedure of Calculation. Frequency calculations were made for $\text{Cl}_3\text{Sn-Mn}(\text{CO})_5$, $\text{Br}_3\text{Sn-Mn}(\text{CO})_5$, and $(\text{CH}_3)_2\text{Sn-Mn}(\text{CO})_5$ molecules on the basis of Wilson's GF matrix method,³⁴⁾ in which CH₃ group was treated as one unit. The symmetry coordinates are constructed based on the C_{3v} symmetry group and C_{4v} for $\text{Mn}(\text{CO})_5$ group respectively, which are listed

³⁴⁾ E. B. Wilson, J. Chem. Phys., 9, 76 (1941).

Table 2. Symmetry coordinates used in the calculation

Symmetry Species	Vibrational Modes	Symmetrys Coordinates*		
A_1	MnC stretching	$S_1 = \Delta r_1$		
		$S_2 = \Delta (r_2 + r_3 + r_4 + r_5)$		
		$S_3 = \Delta(r_2 - r_3 + r_4 - r_5)$		
	CO stretching	$S_4 = \Delta r_6$		
		$S_5 = \Delta(r_7 + r_8 + r_9 + r_{10})$		
		$S_6 = \Delta(r_7 - r_8 + r_9 - r_{10})$		
	SnL stretching	$S_7 = \Delta(r_{11} + r_{12} + r_{13})$		
	SnMn stretching	$S_8 = \Delta r_{14}$		
	LSnL deformation	$S_9 = \Delta(\phi_1 + \phi_2 + \phi_3 - \phi_4 - \phi_5 - \phi_6)$		
	CMnC, CMnSn deformation	$S_{10} = \Delta(\beta_1 + \beta_2 + \beta_3 + \beta_4 - \gamma_1 - \gamma_2 - \gamma_3 - \gamma_4)$		
		$S_{11} = \Delta (\beta_1 - \beta_2 + \beta_3 - \beta_4 - \gamma_1 + \gamma_2 - \gamma_3 + \gamma_4)$		
	CMnC deformation	$S_{12} = \Delta(\alpha_1 - \alpha_2 + \alpha_3 - \alpha_4)$		
	MnCO deformation	$S_{13} = \Delta (\pi_1 + \pi_2 + \pi_3 + \pi_4)$		
		$S_{14} = \Delta (\pi_1 - \pi_2 + \pi_3 - \pi_4)$		
		$S_{15} \!=\! \varDelta (\theta_{1} \!-\! \theta_{2} \!+\! \theta_{3} \!-\! \theta_{4})$		
A_2	MnCO deformation	$\mathbf{S_{16}} = \Delta \left(\theta_1 + \theta_2 + \theta_3 + \theta_4 \right)$		
	Torsion	$S_{17} = \Delta \tau$		
E	MnC stretching	$S_{18} = \Delta(r_2 + r_3 - r_4 - r_5), \ \Delta(r_2 - r_3 - r_4 + r_5)$		
	CO stretching	$S_{19} = \Delta(r_7 + r_8 - r_9 - r_{10}), \ \Delta(r_7 - r_8 - r_9 + r_{10})$		
	SnL stretching	$S_{20} = \Delta(r_{12} - r_{13}), \ \Delta(2r_{11} - r_{12} - r_{13})$		
	LSnL deformation	$S_{21} = \Delta(\phi_2 - \phi_3), (2\phi_1 - \phi_2 - \phi_3)$		
	LSnMn deformation	$S_{22} = \Delta(\phi_5 - \phi_6), \ \Delta(2\phi_4 - \phi_5 - \phi_6)$		
	CMnC deformation	$S_{23} = \Delta(\alpha_1 - \alpha_3), \ \Delta(\alpha_2 - \alpha_4)$		
	CMnC, CMnSn deformation	$S_{24} = \Delta(\beta_1 + \beta_2 - \beta_3 - \beta_4 - \gamma_1 - \gamma_2 + \gamma_3 + \gamma_4),$		
		$\Delta(\beta_1 - \beta_2 - \beta_3 + \beta_4 - \gamma_1 + \gamma_2 + \gamma_3 - \gamma_4)$		
	CMnC, CMnSn deformation	$S_{25} = \Delta (\beta_1 + \beta_2 - \beta_3 - \beta_4 + \gamma_1 + \gamma_2 - \gamma_3 - \gamma_4),$		
		$\Delta(-\beta_1+\beta_2+\beta_3-\beta_4-\gamma_1+\gamma_2+\gamma_3-\gamma_4)$		
	MnCO deformation	$S_{26} \!=\! \varDelta (\theta_1 \!-\! \theta_2 \!-\! \theta_3 \!+\! \theta_4), \ \varDelta (\theta_1 \!+\! \theta_2 \!-\! \theta_3 \!-\! \theta_4)$		
	MnCO deformation	$S_{27} = \Delta \phi_1, \ \Delta \phi_2$		
	MnCO deformation	$S_{28} = \Delta(-\pi_1 - \pi_2 + \pi_3 + \pi_4), \ \Delta(\pi_1 - \pi_2 - \pi_3 + \pi_4)$		
$r_1 - r_5$: Mn-C bonds		$\beta_1 - \beta_4$: C-Mn-C angles		
r_6-r_{10} : C-O bonds		$\gamma_1 - \gamma_4 : C-Mn-Sn \text{ angles}$		
r_{11} — r_{13} : Sn-L bonds r_{14} : Sn-Mn bond		$\pi_1 - \pi_4$: Mn-C-O angles (out-of-plane) $\theta_1 - \theta_4$: Mn-C-O angles (in-plane)		
r_{14} : Sn-Mn bond ϕ_1 — ϕ_3 : L-Sn-L angles		$\phi_1 - \phi_4$: Mn-C-O angles (m-plane) $\phi_1 - \phi_2$: Mn-C-O angles (trans to Sn)		
$\phi_4 - \phi_6$: L-Sn-Mn angles		τ : Torsional angle around the Sn-Mn bond		
$\alpha_1 - \alpha_4$: C-Mn-C angles	(in-plane)	*: Normalization constants are excluded.		

in Table 2. The internal coordinates used are shown in Fig. 3. A normal coordinate analysis is made by solving a secular equation of 39th order. The values of the bond lengths, r(Sn-Mn), r(Mn-C), and r(C-O), listed in Table 3 are taken from the average values of $(CH_3)_3Sn-Mn(CO)_5$ and $Ph_3Sn-Mn(CO)_5$.^{23,24)} The bond lengths, r(Sn-Cl) and r(Sn-Br), are taken from the $(CH_3)SnCl_3$, and $(CH_3)SnBr_3$ values,³⁵⁾ which were determined by electron-diffraction measurements. The L-Sn-L and L-Sn-Mn angles are assumed to be tetrahedral angles, and the C-Mn-C and Sn-Mn-C angles are assumed to be 90° on the basis of the crystal data.^{23,24)}

The modified Urey-Bradley force field is used for the calculation, $^{36)}$ and twenty-four force constants are used for each molecule. The values of them are given in Table 4. The K, H, F, Y, and P symbols

Table 3. The geometrical parameters used in calculation

$r(Mn-C) = 1.78_2 Åa$	∠L-Sn-L=tetrahedral anglea)
$r(C-O) = 1.16_6 Åa$	∠L-Sn-Mn=tetrahedral anglea)
$r(\operatorname{Sn-Mn}) = 2.67_4 \text{Å}^{a}$	$\angle \text{C-Mn-C} = 90^{\circ_{\mathbf{a}}}$
$r(Sn-CH_3) = 2.13Å^{a}$	
$r(Sn-Cl) = 2.32 \text{Å}^{b}$	
$r(Sn-Br) = 2.45 \text{Å}^{b}$	

a) cited from the literature23,24)

represent the stretching, deformation, repulsion, torsion and stretch-stretch interaction force constants respectively. The suffixes, a, e, i, o, t, and c, are explained in Table 4. The initial values of $K_a(CO)$, $K_e(CO)$, $P_t(CO, CO)$, and $P_e(CO, CO)$ of the Mn- $(CO)_5$ moiety are obtained by the Cotton-Kraihanzel method. The other force constants for the Mn- $(CO)_5$ part are taken from the values for Mo $(CO)_6$

³⁵⁾ H. A. Skinner and L. E. Sutton, Trans Faraday Soc., 40, 164 (1944).

³⁶⁾ I. Nakagawa and T. Shimanouchi, Spectrochim. Acta, 22, 759 (1966).

b) cited from the literature³⁵⁾

Table 4. Force constants in md/A

	$\frac{\text{Cl}_3\text{Sn-Mn-}}{(\text{CO})_5}$	$\frac{\text{Br}_3\text{Sn-Mn-}}{(\text{CO})_5}$	$(\mathrm{CH_3})_3\mathrm{Sn-Mn-} \ (\mathrm{CO})_5$
$K_a(\text{MnC})$	1.8	1.8	1.9
$K_e(MnC)$	2.2	2.2	2.5_{7}
$K_a(CO)$	16.9	16.85	16.2 ₆
$K_e(CO)$	17.2 ₃	17.2_{0}	16.3_{0}
$K(\operatorname{SnMn})$	1.0	0.82	0.7
$K(\operatorname{SnL})$	1.8	1.3_{9}	1.9_{5}
H(LSnL)	0.06	0.04	0.05_{5}
H(MnSnL)	0.02	0.02	0.01
$H_e(\mathrm{CMnC})$	0.15	0.15	0.15
$H_a(\mathrm{CMnC})$	0.15	0.15	0.15
H(CMnSn)	0.10	0.10	0.10
$H_i(MnCO)$	0.8	0.8	8.0
$H_o(MnCO)$	0.85	0.85	0.9
$H_a(MnCO)$	0.86	0.83	0.9
$F(L\cdots L)$	0.12	0.12	0.07
$F(Mn\cdots L)$	0.05	0.05	0.05
$F_a(\mathbf{C}\cdots\mathbf{C})$	0.01	0.01	0.01
$F_e(\mathbf{C}\cdots\mathbf{C})$	0.01	0.01	0.01
$F(\mathbf{C} \cdots \mathbf{Sn})$	0.01	0.01	0.01
$Y(Mn-Sn)^{a}$	0.005	0.005	0.005
P(MC, CO)	0.5	0.5	0.4
P(MC, MC)	0.4	0.4	0.4
$P_t(CO, CO)$	0.3	0.3	0.36
$P_c(CO, CO)$	0.17	0.17	0.22

a) md·Å

calculated by Jones.³⁷⁾ The initial set of force constants of the SnL3 groups are aken from the SnL3X and the SnL₄ molecules. 20,21) The initial values of K(SnMn) are estimated on the basis of the diatomic models from the IR frequencies. The values of the repulsion force constants, $F(Mn\cdots L)$ and $F(C\cdots Sn)$, are estimated from the Lennard-Jones potentials for inert gasses.33-40) The initial value of H(MnSnL) is estimated considering the H(CMnC) and H(LSnL)values. The value of Y(Mn-Sn) is arbitrarily assumed to be 0.005 md·Å, taking into account the values of the ethane derivatives.41)

The numerical calculation was carried out by using a HITAC 5020E of the Computation Center of the University of Tokyo and programs set up in the laboratory of Professor T. Shimanouchi. 42) First, the force constants of Br₃Sn-Mn(CO)₅ were determined. The values of the force constants were adjusted to get the best fit of the calculated frequencies with the observed ones, with reference made to the Jacobian matrix elements. Then, the frequencies of the other two molecules were calculated using the same values of the force constants as those of Br₃Sn-Mn(CO)₅, except those which had to be changed essentially.

Results

The final set of all the force constants are listed in Table 4. The frequencies calculated by means of these force constants are in good agreement with the observed values, as is shown in Table 1.

The eigenvectors here obtained show that the vibrational modes associated with the Sn-Mn stretching vibration are extensively coupled with the other vibrational modes, especially with the CMnC deformation and axial MnC stretching modes. The vibrational coupling in the v(Sn-Mn) with other vibrations for Br₃Sn-Mn(CO)₅ is different from those of the other two molecules, and the SnBr stretching vibration is appreciably mixed. The purities of the vibrational modes assigned to the Sn-Mn stretching vibrations are evaluated from the potential energy distribution to the Sn-Mn stretching coordinate (PED), shown in Table 5.

Table 5. Potential energy distribution matrix in Sn-Mn stretching vibration

Approximate vibrational modes		$(\operatorname{PED})_{ij}$				
		$\widehat{\mathrm{Cl_3Sn}\text{-Mn}(\mathrm{CO})_5}$	Br ₃ Sn-Mn(CO) ₅	(CH ₃) ₃ Sn-Mn(CO) ₅		
S_1	Mn-C str.	11	8	8		
S_7	Sn-L str.		16			
S_8	Sn-Mn str.	68	46	64		
\mathcal{S}_{9}	L-Sn-L def.	5		6		
\mathcal{S}_{10}	C-Mn-C def.	14	22	24		
\mathcal{S}_{13}	Mn-C-O def.	4	5	5		

$$(\text{PED})_{ij} = \frac{(\text{L}_{ij})^2 \cdot (\text{F}_{\text{s}})_{ii}}{\lambda_j} \times 100$$

a: axial CO group

e) equatorial CO groups

i and o: in-plane and out-of plane MnCO bending modes of the square planar Mn(CO)4 part.

t: trans

³⁷⁾ L. H. Jones, J. Chem. Phys., 36, 2375 (1962).

³⁸⁾ T. Shimanouchi, Pure Appl. Chem., 7, 131 (1963).
39) T. Shimanouchi, I. Nakagawa, J. Hiraishi, and M. Ishii, J. Mol. Spectr., 19, 78 (1966).

⁴⁰⁾ J. Hiraishi, I. Nakagawa, and T. Shimanouchi, Spectrochim.

Acta, 20, 819 (1964).

⁴¹⁾ T. Miyazawa and K. Fukushima, J. Mol. Spectroscopy, 15, 308 (1965).

⁴²⁾ Department of Chemistry, Faculty of Science, The University of Tokyo, Bunkyo-ku, Tokyo.

Discussion

For metal carbonyl compounds, it is well known that two types of electron donations act between the metal, M, and the ligand, CO, namely σ -electron donation from CO to M and π -electron back-donation from M to CO, and that the variation in the π -interaction between L and M in $LM(CO)_n$ -type metal carbonyl compounds strongly affects the force constants, K(CO)and K(MC), in the following manner. The ligand, L, and the CO can both undergo π -bonding with the metal d orbitals. This π -interaction involves the back-donation of metal d orbitals to the vacant antibonding CO orbitals. If the ligand, L, can also accept metal d_{π} electrons into suitable π -type orbitals, it will compete with the CO for d electrons of the transition metal. The π -acceptor capability of L will also influence the force constants, K(CO) and K(MC). The grater the π -bonding to L, the less the electron density which will enter the antibonding orbitals of the CO, and the greater the CO stretching force constant, and the smaller the MC stretching force constant. 43-45)

The values of the force constants listed in Table 4 show that the strength of the Sn-Mn bond is strongly affected by the electronegativity of the L on the L₃Sn

group; moreover, the smaller the values of K(MnC), the larger the values of K(CO) and K(SnMn) become. These facts suggest that not only the σ -electron donation but also the π -electron back-donation act on the Sn-Mn bond, and that the strength of the π -bond nature between Sn and Mn also varies with the substituent on the Sn atom. Therefore, it can be deduced that the π -bond strengths of the Sn-Mn bond increase in the order: $(CH_3)_3Sn-Mn(CO)_5 < Br_3Sn-Mn(CO)_5$ <Cl₃Sn-Mn(CO)₅, according to the above considerations and the force constants listed in Table 4. The difference in the π -bond strength between chloro- and bromo-complexes is, however, considered not to be large, because the K(MnC) and K(CO)force constants, which are a measure of the π -interaction between Sn and Mn, of the two compounds closely resemble each other. The values of the K-(SnMn) force constants, which are a direct measure of the total bond strength, $(\sigma + \pi)$, between Sn and Mn, are in the same order, but the difference in the K(SnMn) values of the two halogen complexes is much more enhanced. 46) One possible origin of this enhancement is due to the assumption of the same Sn-Mn bond length for these two compounds.

The author wishes to express his deep gratitude to Professor Takehiko Shimanouchi for his kind permission to use the programs set up in his laboratory for the calculations of the normal coordinate treatment analyses. Thanks are also due to Professor Yukiyoshi Sasaki for his encouraging advice and discussions.

⁴³⁾ A "spectrochemical series" for π bonding of ligands L (L=NO, PR₃, AsR₃, SbR₃, phen, dien and so on) have been obtained by making use of the IR data $(\nu(CO))$: M. Bigorgne, J. Organometal. Chem., 1, 101 (1963); F. A. Cotton and C. S. Kraihanzel, J. Amer. Chem. Soc., 84, 4432 (1962), and Inorg. Chem., 2, 533 (1963); F. A. Cotton, ibid., 3, 702 (1964); G. R. Dobson, ibid., 4, 1673 (1965); W. D. Horrcks and R. C. Taylor, ibid., 2, 723 (1963).

⁴⁴⁾ W. A. G. Graham, ibid., 7, 315 (1968).

⁴⁵⁾ L. M. Haines and M. H. B. Stiddard, Advan. Inorg. Chem. Radio-Chem., 11, 53 (1969).

⁴⁶⁾ On the basis of ⁵⁵Mn-NMR data, the electronic nature around the Mn nucleus in the Br₃Sn-Mn(CO)₅ is in close resemblance to that of Cl₃Sn-Mn(CO)₅.